Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome.

نویسندگان

  • Alfredo Villasante
  • José P Abad
  • María Méndez-Lago
چکیده

The centromere is the DNA region of the eukaryotic chromosome that determines kinetochore formation and sister chromatid cohesion. Centromeres interact with spindle microtubules to ensure the segregation of chromatids during mitosis and of homologous chromosomes in meiosis. The origin of centromeres, therefore, is inseparable from the evolution of cytoskeletal components that distribute chromosomes to offspring cells. Although the origin of the nucleus has been debated, no explanation for the evolutionary appearance of centromeres is available. We propose an evolutionary scenario: The centromeres originated from telomeres. The breakage of the ancestral circular genophore activated the transposition of retroelements at DNA ends that allowed the formation of telomeres by a recombination-dependent replication mechanism. Afterward, the modification of the tubulin-based cytoskeleton that allowed specific subtelomeric repeats to be recognized as new cargo gave rise to the first centromere. This switch from actin-based genophore partition to a tubulin-based mechanism generated a transition period during which both types of cytoskeleton contributed to fidelity of chromosome segregation. During the transition, pseudodicentric chromosomes increased the tendency toward chromosomal breakage and instability. This instability generated multiple telocentric chromosomes that eventually evolved into metacentric or holocentric chromosomes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of the Evolutionary Chromosome Plasticity: Integrating the 'Centromere-from-Telomere' Hypothesis with Telomere Length Regulation.

The 'centromere-from-telomere' hypothesis proposed by Villasante et al. [2007a] aims to explain the evolutionary origin of the eukaryotic chromosome. The hypothesis is based on the notion that the process of eukaryogenesis was initiated by adaptive responses of the symbiont eubacterium and its archaeal host to their new conditions. The adaptive responses included fragmentation of the circular g...

متن کامل

On the Origin of the Eukaryotic Chromosome: The Role of Noncanonical DNA Structures in Telomere Evolution

The transition of an ancestral circular genome to multiple linear chromosomes was crucial for eukaryogenesis because it allowed rapid adaptive evolution through aneuploidy. Here, we propose that the ends of nascent linear chromosomes should have had a dual function in chromosome end protection (capping) and chromosome segregation to give rise to the "proto-telomeres." Later on, proper centromer...

متن کامل

Structural dynamics of eukaryotic chromosome evolution.

Large-scale genome sequencing is providing a comprehensive view of the complex evolutionary forces that have shaped the structure of eukaryotic chromosomes. Comparative sequence analyses reveal patterns of apparently random rearrangement interspersed with regions of extraordinarily rapid, localized genome evolution. Numerous subtle rearrangements near centromeres, telomeres, duplications, and i...

متن کامل

Telomere replication, kinetochore organizers, and satellite DNA evolution.

Robertsonian rearrangements demonstrate one-break chromosome rearrangement and the reversible appearance and disappearance of telomeres and centromeres. Such events are quite discordant with classical cytogenetic theories, which assume all chromosome rearrangements to require at least two breaks and consider centromeres and telomeres as immutable structures rather than structures determined by ...

متن کامل

Meiotic nuclear reorganization: switching the position of centromeres and telomeres in the fission yeast Schizosaccharomyces pombe.

In fission yeast meiotic prophase, telomeres are clustered near the spindle pole body (SPB; a centrosome-equivalent structure in fungi) and take the leading position in chromosome movement, while centromeres are separated from the SPB. This telomere position contrasts with mitotic nuclear organization, in which centromeres remain clustered near the SPB and lead chromosome movement. Thus, nuclea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 25  شماره 

صفحات  -

تاریخ انتشار 2007